Amazon S3 CSV to Snowflake

This page provides you with instructions on how to extract data from Amazon S3 CSV and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Amazon S3?

Amazon S3 (Simple Storage Service) provides cloud-based object storage through a web service interface. You can use S3 to store and retrieve any amount of data, at any time, from anywhere on the web. S3 objects, which may be structured in any way, are stored in resources called buckets. One common use is to store files in comma-separated values (CSV) format, in which each record consists of multiple values separated by commas.

What is Snowflake?

Snowflake is a cloud-based data warehouse implemented as a managed service. It runs on the Amazon Web Services architecture using EC2 and S3 instances. Snowflake is designed to be fast, flexible, and easy to work with. For instance, for query processing, Snowflake creates virtual warehouses that run on separate compute clusters, so querying one virtual warehouse doesn't slow down the others.

Getting CSV data out of S3

AWS has both a REST API and command-line utilities that you can use to get at resources stored in the platform. To retrieve objects you need to know the object and host names, as well as your AWS authorization information.

Preparing CSV data

If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in each table, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them.

Preparing data for Snowflake

Depending on the structure of your data, you may need to prepare it for loading. Look at the supported data types for Snowflake and make sure that the data you've got will map neatly to them.

Note that you don't need to define a schema in advance when loading JSON data into Snowflake.

Loading data into Snowflake

The Snowflake documentation's Data Loading Overview section can help you with the task of loading your data. If you're not loading a lot of data, you might be able to use the data loading wizard in the Snowflake web UI, but chances are the limitations on that tool will make it a non-starter as a reliable ETL solution. Alternatively, there are two main steps for getting data into Snowflake:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You’ll have the option of copying from your local drive or from Amazon S3. One of Snowflake's slick features lets you make a virtual warehouse that can power the insertion process.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Microsoft Azure Synapse Analytics, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3 or Delta Lake on Databricks. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Panoply, To Azure Synapse Analytics, To S3, and To Delta Lake.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from Amazon S3 CSV to Snowflake automatically. With just a few clicks, Stitch starts extracting your Amazon S3 CSV data, structuring it in a way that's optimized for analysis, and inserting that data into your Snowflake data warehouse.